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Abstract— This research provides a new methodology and a computer program in Java language to analyze reinforced concrete structures till 

failure and takes into consideration both geometric and material nonlinearities. The analysis uses the stiffness method as well as the finite ele-
ment principles and analyses also the reinforced concrete cross section to calculate the member axial and flexural rigidities. The coordinates are 
updated each iteration and the axial load effect is considered in the geometrical stiffness matrix and also determines the failure criteria during the 
analysis. The development of plastic hinges throughout the building can be observed. The nonlinear equations are solved by the Newton 
Raphson method. A computer program (POA) is specially developed to solve different types of plane frames. It consists of the main and four 
classes. The application to the solution of one story as well as two story portal frames proved that the analysis is robust and the deviation to the 
experimental result is less than 3 %.  

Index Terms— Nonlinear analysis, Material nonlinearity, Geometric nonlinearity, Reinforced concrete, Newton Raphson method, Portal Frame, 
Pushover Analysis  

——————————      —————————— 

I. INTRODUCTION 

Push-over analysis is a simple method for the nonlinear 
static analysis of building structures subjected to mono-
tonically increasing horizontal loading and which is de-
signed to be a part of new methodologies for the seismic 
design and evaluation of structures. In the classical anal-
ysis methods of plane framed structures, the axial and 
flexural rigidities are assumed to be constants. Such ideal 
conditions are unrealistic because the material behavior 
is actually nonlinear. The axial and flexural rigidities 
decrease with the increasing internal forces. The struc-
ture geometry is continuously changing with the varying 
applied forces too. A step-by-step nonlinear analysis 
method to invest up to failure is essential. 

Parente et-al (2014) ‎[1] formulated a co-rotational frame 
structural analysis program and used the principle of 
virtual work to find the material and geometrical nonlin-
ear matrices and combined these matrices to form the 
tangent stiffness matrix for both local and global element 
and structural stiffness matrices. The cross section was 
divided to one to five layers according to the stress strain 
relations and used Gauss quadrature rule in the numeri-
cal integration. 

Alaa et-al (2014) ‎[1] in his thesis “Finite Element Analysis 
of Reinforced Concrete Joints” studied, used, and devel-
oped a computer program form the internet in Java Lan-
guage named Jlimpo for the linear analysis of plane 
frame structures. He applied the program for the solu-
tion of statically determined joint frames. The program 

was used for the internal force calculations. 
 These internal forces were applied to anther program 
(Alaa Crack) for the cross section to calculate the crack-

ing moment  cM , the ultimate moment  uM and the 

crack length. 

El Gendy (2012)‎[3] produced a computer program 
(NARC) for the frame structural analysis taking into con-
sideration soil structure interaction. The material nonlin-
earity takes into consideration the distribution; number 
and diameter of the reinforcing steel used throw layered 
analysis for cross section. The soil was modeled using 
four different linear and nonlinear models. 

El Hout et-al (1989) ‎[4] developed a simple direct formu-
lation and a computer program in Basic Language for the 
solution of plane frame structure taking into considera-
tion both material and geometrical nonlinearities. In the 
material modeling, tension stiffening in concrete and 
compression for confined concrete as well as the strain 
hardening in steel were considered. The geometric stiff-
ness considered axial load effect and updated the coor-
dinates after each solution load step. The analysis was 
divided into two programs, one of them for the cross 
section (M-C) to find moment curvature relationship for 
each different cross section and the other for frame struc-
ture (RCF) to find load deflection relationship. 
In this research, a new finite element model is developed 
in Java Language (Gehad POA) to analyze the nonlinear 
behavior of plane frame structures. The program takes 
into consideration both the material and geometrical 
nonlinearities. For the material nonlinearity, real stress-
strain curves for confined and unconfined concrete and 
reinforcing steel in tension and compression up to failure 
are considered. The cross section is divided into equal 
number of layers where strains and stresses are calculat-
ed for each layer and summed up to find the axial and 
flexural rigidities to be used in the stiffness matrix. The 
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geometrical nonlinearity is taken into considerations by 
updating the structural coordinates after each iteration, 
also the effect of axial load is considered in the geomet-
rical matrix. The solution of nonlinear equilibrium equa-
tions is performed using the incremental-iterative New-
ton Raphson techniques. The solution can trace the load 
deformation up to failure of steel or concrete and 
through the formation of the plastic hinges. An object 
oriented program in Java is developed for the solution of 
the nonlinear equilibrium equations which is accurate, 
effective and easy to implement. 

2- Formulation of the tangent stiffness 

matrix  

2.1. Material Model 

The material models adopted in the present work, are:- 

2.1.1. Concrete in Compression 

Two stress-strain relations were adopted to represent the 

behavior of compressed concrete: Hognestad curve‎[5] 
(Figure 1) for unconfined concrete and the curve recom-
mended by Mander [6] for confined concrete. The rela-
tion  is  modeled by  a  parabolic  curve  up  to  the  max-

imum  strength   \

cf followed  by  a  descending  linear    

till  failure.   

The equations of unconfined sections (without stirrups) 
are:- 

For the parabola: 

2
2 2

 0c c
c c c co

co co

f f if
 

 
 

  
     
   

                             (1) 

For the straight line:- 

1 0.15 c co
c c co c cu

cu co

f f if
 

  
 

  
     

   

                    (2) 

For confined sections (with stirrups), a similar model is 
considered as shown in the figure 1. It should be noticed 
that the crushing strain of a confined section is much 
higher than that of an unconfined section. 

 

For confined concrete, the stress in concrete  cf , corre-

sponding to a strain  c is given by  

'
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2.1.2. Concrete in Tension  

It can be clearly observed that the tensile strength of con-
crete increases linearly with increasing strain up to crack-

ing‎[6]. At cracking strain  cr , a small subsequent drop 

in tensile strength occurs.  The tensile strength then de-
creases monotonically with increasing strain up to fail-
ure. 

For
t cr  ,           *t t tf E                                            (9) 

For
cr t a    ,    

 

2 3

3

t cr a
t tu

cr a

f f
  

 

  
    

               (10) 

For
a t b    ,    

 3

t b
t tu

a b

f f
 

 

 
    

                          (11) 

2.1.3. Reinforcing Steel  

Figure 2 shows a typical stress-strain relationship of steel 

in tension and compression ‎[8].  
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For s  < y                 *s s sF E                                  (12) 
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su shr                            (16),  
1 s shk                    (17)    

2.2. Cross Section Models   

The nonlinear model of reinforced concrete sections subjected 

to strain n , and the curvature  is developed in this 

section, based on the following assumptions:- 

-  Strain distribution is linear along the section while the stress 
distribution is nonlinear. 

-  The bond between concrete and reinforcing steel is perfect.  

Figure 3 shows a reinforced concrete section subjected to an 
axial force (N) at the centroid of the cross section and a bend-
ing moment (M) with the corresponding strain and stress dis-
tributions.  

 

The cross-section is divided into a number of equal con-
crete strips as shown in Figure 3. The strains for each 

strip are functions of the cross section curvature   and 

the strain  n , while the stresses, in turn, are functions 

of the strains. The mechanical properties of the cross sec-
tion (EA & EI) on each concrete strip are numerically 
integrated in order to obtain the stress and strain acting 
on that strip. 

t

A

EA E dA                  (18), 2

t

A

EI E y dA                      (19) 

2.3. Strain Displacement Model   

Two-node beam element having four degrees of free-
dom; one lateral and one rotational at each node, beside 
the axial effect at each node to have six degree of free-
dom system (Figure 4).  

 

Hermitian shape functions are used for the two-node 
beam element (Equations 20, 21, 22, 23).  

 

International Journal of Scientific & Engineering Research Volume 9, Issue 3, March-2018 
ISSN 2229-5518  

349

IJSER © 2018 
http://www.ijser.org

IJSER



2 3

1 1 3 2
x x

N
L L

   
     

   

       (20), 
2

2 1
x

N x
L

 
  

 

         (21) 

2 3

3 3 2
x x

N
L L

   
    

   

          (22), 
2

4

x x
N x

L L

  
      

   (23)  

The second derivative of the shape functions is the 

strain-displacement matrix B and is given by: 

   
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                                                                    (24), 
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                                                        (25) 

For the straight beam the stiffness matrix mK is: 

     * *
T

mK B EI B                                                        (26)                      

The element stiffness matrix [k]is 4 by 4 matrixes and EI 
parameter is obtained from the cross-section. The EI pa-
rameter is calculated from cross section model.  

Curvature   is the second derivative of the displace-

ments (u), as seen in Equation (27). 

2

2

d u

dx
                                                                                 (27)             

    11 11 12 21 13 31 14 414*11*4
u x u N u N u N u N u N      

    (28) 

    11 11 12 21 13 31 14 414*11*4
x u B u B u B u B u B       

        (29)  

At this step a 4x4 stiffness matrix is constructed. The axi-
al degrees of freedom are added to the system. As the 
flexural stiffness softens via the displacements, also the 
axial stiffness decreases. 

 
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 
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 
 

  

                (30) 

 2.4. Force Displacement Model  

If a structure is in the state of stable equilibrium and the 
small displacement theory is valid, then there is a rela-
tionship between the deformations of the structure and 
the applied load system. The load displacement relation-
ship can be expressed by: 

  *{ } { }T i ii
k d dF                                                           (31) 

Where,  

 T i
k = tangential stiffness matrix for the ith element,  

{ }id = displacements vector for the ith element, 

{ }idF = force vector for the ith element, the tangential 

stiffness matrix Tk is composed of two components 

and can be written as: 

   T m gi i i
k k k    

                                                        (32) 

Where,  

 m gi i
k and k  

= material and geometrical stiffness ma-

trix for the ith element, respectively, 

 

The geometric stiffness matrix
gk   for frame element is 

given by: -  

International Journal of Scientific & Engineering Research Volume 9, Issue 3, March-2018 
ISSN 2229-5518  

350

IJSER © 2018 
http://www.ijser.org

IJSER



 

2 2

2 2

0 0 0 0 0 0

6 6
0 0

5 10 5 10

2
0 0

10 15 10 30

0 0 0 0 0 0

6 6
0 0

5 10 5 10

2
0 0

10 30 10 15

g

L L

L L L L

P
k

L

L L

L L L L

 
 
 
 
 
  

       
 
   
 
 
  
  

                  (33) 

Where, 

± P = tensile or compressive axial force, 

L= length of frame element.  

It is clearly observed that the geometrical stiffness ma-

trix
gk   depends on the axial force P. It expresses the 

decrease in the flexure stiffness due to the presence of a 
compressive axial force.  The negative sign corresponds 
to a compressive axial force, and vice versa.  

Equation (33) is formed in an incremental form since the 
use of the geometric matrix to capture the second-order 
effects requires a stepwise application of the applied 
loads.  This matrix should be updated, at every load step, 
based on the resulting axial forces in the frame elements. 

3-  SOLUTION PROCEDURE AND FLOW CHART 

The solution of the nonlinear equilibrium equations is 
performed using Newton Raphson technique. 

3.1. Newton Raphson Method 

In this technique, the load is divided into load steps, and 
then an iterative procedure is adopted to achieve equilib-
rium as shown in figure (7). 

 

As shown in figure 7, the applied load is divided into 
steps and the external load (fext) incremental by using 
(∆fext) and number of step (nstep). Frist, the initial stiffness 

matrix  0k is used to calculate the nodal displacements 

and the internal forces (fint), the differences between ex-
ternal and internal force (∆fint) is corrected by the New-
ton Raphson technique to reach the equilibrium position 
within a satisfy tolerance (tol).  

The load continues to increase until the structure col-
lapses by any of failure criteria. 

3.2. Failure Criteria  

Two type of failure are considered in this research, these 
are:- 

 Crushing failure of concrete: - it is assumed to oc-
cur when the maximum compression strain is 
exceeded. 

 Steel yielding: - it is assumed to carry when the 
ultimate tension strain of the reinforcing steel is 
exceeded. 

3.3. Flow chart 

Figure 8 shows the steps of the method as a flow chart 
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4-  COMPUTER PROGRAM  

POA (pushover analysis) is a computer program devel-
oped to carry out the analysis in this research. The pro-
gram was written in Java Language [9] and is easy to 
implement, efficient in obtaining the results, simple and 
robust. 

  

 

 

As shown in Figure 9 shows that the main package con-
sists of four classes beside the main class and each had 
been tested separately before putting together. These 
classes are:- 

4.1. Main Class 

All these classes are organized to form the main class 
which analyses the structure. This works as the diver for 
all classes. It calls four classes.  

4.1.1. Material Class:- 

This class defines the properties of material and the 
stress- strain relationship for concrete and steel. It was 
built with seven material model methods in the program. 

•  Hognestad method: - for unconfined concrete in com-
pression. 

• Monder method: - for confined concrete in compres-
sion. 

• Reinforced steel: - which describes stress- strain curve 
for reinforcing steel with three models: - bilinear model, 
tri-linear model and strain harden model, is used in this 
research.
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•  Tension method: - which describes stress- strain curve 
for concrete in tension.  

There were other methods to describe stress- strain curve 
as needed. 

4.1.2. Cross Section Class:- 

This class is used to define properties and behavior of 
cross section. It was built with three methods 

 Describe Cross Section method: - which is used to 
define properties of cross section and the num-
ber, diameter and distribution of steel bars. 

 Modified Rigidity method:- which is used after 
calculating strain and curvature in elements and 
this method determine and draw strain distribu-
tion, and from there calculate stress distribution 
on section hence determine real axial and flex-
ural rigidity to find the modified stiffness ele-
ment. 

 Failure Criteria method: - which is used to check 
the failure due to crushing of concrete, or yield-
ing of steel, at the end of each load step.  

4.1.3. Element Class:- 

This class is used to describe the element and form its 
stiffness matrix. It consists of six methods. 

 Describe Element method: - which is used to de-
fine element, joints, coordinates, loads, and 
boundary condition information: - the start and 
end joint, its coordinates, and assign the record-
er cross section, and define boundary condition. 

 Initial stiffness matrix method: - which is used to 
build the initial stiffness matrix for element. 

 Geometric change method: - which is used to 
modify the coordinates of joints and update the 
length and the slope angle of element hence 
forms the transformation matrix. 

 Material Matrix method: - which is used to incor-
porate new axial and flexural rigidity form cross 
section with strain-displacement matrix to form 

material matrix  mk for element. 

 Geometrical Matrix method: - which is used to in-
clude the effect of the axial load and form the 

geometrical matrix 
gk   for element. 

 Tangent Stiffness Matrix method: -which is 
formed by adding the material and geometrical 
matrices and transforming to global axes matrix 

with both and sum them to build tangent stiff-
ness matrix for element. 

4.1.4. Analysis Class:- 

This class is the most important class in this package, 
because it defines the type of analysis. It consisted of 
three methods. 

 Gauss Banded method: - which solve banded 
equilibrium equations using Gauss method. 

 Linear Analysis method: - which assemble the 
global stiffness matrix, apply the boundary con-
ditions, solve the equilibrium equations, deter-
mine nodal displacement and end forces. 

 Newton Raphson method: - which solve linear 
analysis, calculate strain-displacement matrix, 
move to cross section and modify rigidity, and 
move to element to calculate tangent stiffness 
matrix, finally solve and determine the nodal 
displacement and search for convergence. 

5- APPLICATION:- 

Two portal frames tested experimentally were chosen as 
a check for our formulation and computer program 
(POA), these are:- 

5.1. Single bay one story portal frame:- 

This concrete frame model was tested in [10]. Geometry, 
cross-sections and material properties are presented in 
Figure 10. It has span of 2.00m and a story height of 1.64 
m and the cross section dimension is 12.5*15 cm for the 
column cross section and 12.5*20 cm for the beam cross 
section. The other material parameters used in the non-
linear analysis were estimated as described in Section 4. 
The compressive strength is ƒc = 13 MPa, and Ec = 20,000 
MPa, and the yield strength is ƒy = 535 MPa for steel 
reinforcement and the Young’s modulus is Es = 200,000 
MPa. 

 
The Force Control Method was used for nonlinear analy-
sis with increments of 1 KN for the horizontal force of 
top-left node. 
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The load (base shear)-displacement curve is shown in 
Figure 11. These results shown that the models can ade-
quately represent the structural behavior of this frame. 
The POA prediction for ultimate load was found to be 
2.1% lower than the experimental result at 300 mm de-
flection. 

 The ultimate 

load (KN) 

Displacement 

(mm) 

Test 14.71 300 

POA 14.4 300 

deviation 2.1%  

 

 

5.2. Single bay two story frame test:- 

Figure 12 shows a model for single-bay two-story frame, 
which was tested in [11].  The frame was designed with a 
span of 2.1m and a story height of 1.5 m for each story. 
The lateral load was applied such that 1/3 and 2/3 of the 
total load on the lower and top story, respectively. 

 
The concrete had a compressive strength of 10 MPa. The  
φ12 mm  reinforcing  steel  bars,  used  as  longitudinal 
reinforcement  in  all  members  were  found  to  have  a  
yield strength  of  480 MPa, and a modulus  of  elasticity  
of  200,000 MPa. The lateral load was applied monoton-
ically until the ultimate capacity of the frame was 
achieved.  
Figure 13 shows comparisons between the predicted load 
(base shear) deflection responses using the POA program 
and the experimental results, [11].  It can be clearly ob-

served that the analytical and experimental results are in 
a good agreement. The POA prediction for ultimate load 
was found to be 2.8% higher than the experimental result 
at 40 mm deflection.  

 The ultimate 

load (KN) 

Displacement 

(mm) 

Test 34.51 40 

POA 35.48 40 

deviation 2.8%  

 

 
 

 

6- CONCLUSIONS:- 

 In this research, a general methodology and a computer 
program in Java Language for the nonlinear analysis of 
framed structure is developed. It was shown that the 
method is simple, efficient, accurate and robust. The ma-
terial nonlinearity includes diffident material models for 
concrete and steel and forms the material stiffness matrix 
and includes diffident failure criteria. For the geometrical 
nonlinearity, it updates the coordinates and takes the 
effect of axial loads. The solution of nonlinear analysis 
performed using the incremental - iterative Newton 
Raphson method. The method is applied to the pushover 
analysis of both one story and two story portal framed 
structures with maximum load deviation less than 2.8% 
of the experimental results. 
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